The following papers are associated with or a direct result of SYMETA's research.

[1]       S. Zhang, D. Cadman, and J. C. Vardaxoglou, “Additively Manufactured Profiled Conical Horn Antenna With Dielectric Loading,” IEEE Antennas Wirel. Propag. Lett., vol. 17, no. 11, pp. 2128–2132, Nov. 2018.

[2]       S. Zhang, R. K. Arya, W. G. Whittow, D. Cadman, R. Mittra, and J. Vardaxoglou, “Ultra-Wideband Flat Metamaterial GRIN Lenses Assisted with Additive Manufacturing Technique,” IEEE Trans. Antennas Propag., vol. In press, pp. 1–1, 2020.

[3]       C.-K. Lee, S. Zhang, S. S. Bukhari, D. Cadman, J. C. Vardaxoglou, and W. G. Whittow, “Complex Permittivity Measurement System for Solid Materials Using Complementary Frequency Selective Surfaces,” IEEE Access, vol. 8, pp. 7628–7640, 2020.

[4]       T. W. Whittaker, W. G. Whittow, and J. C. Vardaxoglou, “Artificially Engineered Capacitors for Discrete High-Frequency Electronic Circuitry,” IEEE Trans. Microw. Theory Tech., vol. 68, no. 1, pp. 74–86, Jan. 2020.

[5]       P. Rayner, S. Zhang, D. Cadman, J. (Yiannis) C. Vardaxoglou, and W. Whittow, “Wearable and meshed wideband monopole antennas and their interactions with the human body,” IET Microwaves, Antennas Propag., vol. 13, no. 14, pp. 2412–2418, Nov. 2019.

[6]       N. Chiotellis, S. Zhang, Y. C. Vardaxoglou, and A. Grbic, “X Wave Radiator Implemented With 3-D Printed Metamaterials,” IEEE Trans. Antennas Propag., vol. 68, no. 7, pp. 5478–5486, Jul. 2020.

[7]       C.-K. Lee, J. McGhee, C. Tsipogiannis, S. Zhang, D. Cadman, A. Goulas, T. Whittaker, R. Gheisari, D. Engstrom, J. (Yiannis) Vardaxoglou, and W. Whittow, “Evaluation of Microwave Characterization Methods for Additively Manufactured Materials,” Designs, vol. 3, no. 4, p. 47, Sep. 2019.

[8]       A. Goulas, G. Chi-Tangyie, S. Zhang, D. Wang, A. Ketharam, B. Vaidhyanathan, I. M. Reaney, D. A. Cadman, W. Whittow, J. (Yiannis) C. Vardaxoglou, and D. S. Engstrøm, “Direct ink writing of bismuth molybdate microwave dielectric ceramics,” Ceram. Int., vol. 47, no. 6, pp. 7625–7631, Mar. 2021.

[9]       A. Goulas, G. Chi-Tangyie, D. Wang, S. Zhang, A. Ketharam, B. Vaidhyanathan, I. M. Reaney, D. A. Cadman, W. G. Whittow, J. (Yiannis) C. Vardaxoglou, and D. S. Engstrøm, “Microstructure and microwave dielectric properties of 3D printed low loss Bi2Mo2O9 ceramics for LTCC applications,” Appl. Mater. Today, vol. 21, p. 100862, Dec. 2020.

[10]     A. Goulas, G. Chi-Tangyie, D. Wang, S. Zhang, A. Ketharam, B. Vaidhyanathan, I. M. Reaney, D. A. Cadman, W. G. Whittow, J. (Yiannis) C. Vardaxoglou, and D. S. Engstrøm, “Additively manufactured ultra-low sintering temperature, low loss Ag2Mo2O7 ceramic substrates,” J. Eur. Ceram. Soc., vol. 41, no. 1, pp. 394–401, Jan. 2021.

[11]     A. Goulas, S. Zhang, J. R. McGhee, D. A. Cadman, W. G. Whittow, J. C. Vardaxoglou, and D. S. Engstrøm, “Fused filament fabrication of functionally graded polymer composites with variable relative permittivity for microwave devices,” Mater. Des., vol. 193, p. 108871, Aug. 2020.

[12]     R. Gheisari, H. Chamberlain, G. Chi-Tangyie, S. Zhang, A. Goulas, C.-K. Lee, T. Whittaker, D. Wang, A. Ketharam, A. Ghosh, B. Vaidhyanathan, W. Whittow, D. Cadman, Y. C. Vardaxoglou, I. M. Reaney, and D. S. Engstrøm, “Multi-material additive manufacturing of low sintering temperature Bi2Mo 2O9 ceramics with Ag floating electrodes by selective laser burnout,” Virtual Phys. Prototyp., vol. January, pp. 1–15, Jan. 2020.

[13]     T. Goulas, S. Zhang, D. Cadman, J. Jarvelainen, V. Myllarr, W. Whittow, Y. Vardaxoglou, and D. Engstrom, “The impact of 3D printing process parameters on the dielectric properties of high permittivity composites,” Designs, vol. 3, no. 4, 2019.

[14]     J. Wu, J. Zhao, B. Vaidhyanathan, H. Zhang, A. Anshuman, A. Nare, and S. Saremi-Yarahmadi, “Rapid microwave-assisted bulk production of high-quality reduced graphene oxide for lithium ion batteries,” Materialia, vol. 13, p. 100833, Jul. 2020.

[15]     D. Zhou, J. Li, L.-X. Pang, D.-W. Wang, and I. M. Reaney, “Novel water insoluble (Na x Ag 2−x )MoO 4 (0 ≤ x ≤ 2) microwave dielectric ceramics with spinel structure sintered at 410 degrees,” J. Mater. Chem. C, vol. 5, no. 24, pp. 6086–6091, 2017.

[16]     D. Wang, Z. Fan, D. Zhou, A. Khesro, S. Murakami, A. Feteira, Q. Zhao, X. Tan, and I. M. Reaney, “Bismuth ferrite-based lead-free ceramics and multilayers with high recoverable energy density,” J. Mater. Chem. A, vol. 6, no. 9, pp. 4133–4144, 2018.

[17]     D. Wang, G. Wang, S. Murakami, Z. Fan, A. Feteira, D. Zhou, S. Sun, Q. Zhao, and I. M. Reaney, “BiFeO 3 -BaTiO 3 : A new generation of lead-free electroceramics,” J. Adv. Dielectr., vol. 08, no. 06, p. 1830004, Dec. 2018.

[18]     D. Wang, Z. Fan, W. Li, D. Zhou, A. Feteira, G. Wang, S. Murakami, S. Sun, Q. Zhao, X. Tan, and I. M. Reaney, “High Energy Storage Density and Large Strain in Bi(Zn 2/3 Nb 1/3 )O 3 -Doped BiFeO 3 –BaTiO 3 Ceramics,” ACS Appl. Energy Mater., vol. 1, no. 8, pp. 4403–4412, Aug. 2018.

[19]     D. Zhou, L.-X. Pang, D.-W. Wang, Z.-M. Qi, and I. M. Reaney, “High Quality Factor, Ultralow Sintering Temperature Li 6 B 4 O 9 Microwave Dielectric Ceramics with Ultralow Density for Antenna Substrates,” ACS Sustain. Chem. Eng., vol. 6, no. 8, pp. 11138–11143, Aug. 2018.

[20]     G. Wang, Z. Fan, S. Murakami, Z. Lu, D. A. Hall, D. C. Sinclair, A. Feteira, X. Tan, J. L. Jones, A. K. Kleppe, D. Wang, and I. M. Reaney, “Origin of the large electrostrain in BiFeO 3 -BaTiO 3 based lead-free ceramics,” J. Mater. Chem. A, vol. 7, no. 37, pp. 21254–21263, 2019.

[21]     D. Wang, D. Zhou, K. Song, A. Feteira, C. A. Randall, and I. M. Reaney, “Cold‐Sintered C0G Multilayer Ceramic Capacitors,” Adv. Electron. Mater., vol. 5, no. 7, p. 1900025, Jul. 2019.

[22]     Z. Lu, G. Wang, W. Bao, J. Li, L. Li, A. Mostaed, H. Yang, H. Ji, D. Li, A. Feteira, F. Xu, D. C. Sinclair, D. Wang, S.-Y. Liu, and I. M. Reaney, “Superior energy density through tailored dopant strategies in multilayer ceramic capacitors,” Energy Environ. Sci., vol. 13, no. 9, pp. 2938–2948, 2020.

[23]     G. Wang, Z. Lu, H. Yang, H. Ji, A. Mostaed, L. Li, Y. Wei, A. Feteira, S. Sun, D. C. Sinclair, D. Wang, and I. M. Reaney, “Fatigue resistant lead-free multilayer ceramic capacitors with ultrahigh energy density,” J. Mater. Chem. A, vol. 8, no. 22, pp. 11414–11423, 2020.

[24]     H. Yang, Z. Lu, L. Li, W. Bao, H. Ji, J. Li, A. Feteira, F. Xu, Y. Zhang, H. Sun, Z. Huang, W. Lou, K. Song, S. Sun, G. Wang, D. Wang, and I. M. Reaney, “Novel BaTiO 3 -Based, Ag/Pd-Compatible Lead-Free Relaxors with Superior Energy Storage Performance,” ACS Appl. Mater. Interfaces, vol. 12, no. 39, pp. 43942–43949, Sep. 2020.

[25]     D. Wang, Z. Fan, G. Rao, G. Wang, Y. Liu, C. Yuan, T. Ma, D. Li, X. Tan, Z. Lu, A. Feteira, S. Liu, C. Zhou, and S. Zhang, “Ultrahigh piezoelectricity in lead-free piezoceramics by synergistic design,” Nano Energy, vol. 76, p. 104944, Oct. 2020.

[26]     D. Wang, J. Chen, G. Wang, Z. Lu, S. Sun, J. Li, J. Jiang, D. Zhou, K. Song, and I. M. Reaney, “Cold sintered LiMgPO 4 based composites for low temperature co‐fired ceramic (LTCC) applications,” J. Am. Ceram. Soc., vol. 103, no. 11, pp. 6237–6244, Nov. 2020.

[27]     Z. Lu, W. Bao, G. Wang, S.-K. Sun, L. Li, J. Li, H. Yang, H. Ji, A. Feteira, D. Li, F. Xu, A. K. Kleppe, D. Wang, S.-Y. Liu, and I. M. Reaney, “Mechanism of enhanced energy storage density in AgNbO3-based lead-free antiferroelectrics,” Nano Energy, vol. 79, p. 105423, Jan. 2021.

[28]     D. Wang, B. Siame, S. Zhang, G. Wang, X. Ju, J. Li, Z. Lu, Y. Vardaxoglou, W. Whittow, D. Cadman, S. Sun, D. Zhou, K. Song, and I. M. Reaney, “Direct Integration of Cold Sintered, Temperature-Stable Bi2Mo2O9-K2MoO4 Ceramics on Printed Circuit Boards for Satellite Navigation Antennas,” J. Eur. Ceram. Soc., vol. 40, no. 12, pp. 4029–4034, Sep. 2020.

[29]     D. Wang, S. Zhang, G. Wang, Y. Vardaxoglou, W. Whittow, D. Cadman, D. Zhou, K. Song, and I. M. Reaney, “Cold sintered CaTiO3-K2MoO4 microwave dielectric ceramics for integrated microstrip patch antennas,” Appl. Mater. Today, vol. 18, p. 100519, Mar. 2020.

[30]     D. Wang, S. Zhang, D. Zhou, K. Song, A. Feteira, Y. Vardaxoglou, W. Whittow, D. Cadman, and I. M. Reaney, “Temperature Stable Cold Sintered (Bi0.95Li0.05)(V0.9Mo0.1)O4-Na2Mo2O7 Microwave Dielectric Composites,” Materials (Basel)., vol. 12, no. 9, p. 1370, Apr. 2019.

[31]     S. S. Faouri, A. Mostaed, J. S. Dean, D. Wang, D. C. Sinclair, S. Zhang, W. G. Whittow, Y. Vardaxoglou, and I. M. Reaney, “High quality factor cold sintered Li2MoO4BaFe12O19 composites for microwave applications,” Acta Mater., vol. 166, pp. 202–207, Mar. 2019.

[32]     D. Wang, D. Zhou, S. Zhang, Y. Vardaxoglou, W. G. Whittow, D. Cadman, and I. M. Reaney, “Cold-Sintered Temperature Stable Na0.5Bi0.5MoO4 –Li2 MoO4 Microwave Composite Ceramics,” ACS Sustain. Chem. Eng., vol. 6, no. 2, pp. 2438–2444, Feb. 2018.

[33]     Y. Ji, K. Song, S. Zhang, Z. Lu, G. Wang, L. Li, D. Zhou, D. Wang, and I. M. Reaney, “Cold sintered, temperature-stable CaSnSiO5-K2MoO4 composite microwave ceramics and its prototype microstrip patch antenna,” J. Eur. Ceram. Soc., vol. 41, no. 1, pp. 424–429, Aug. 2020.

[34]     A. Vallecchi, A. Radkovskaya, L. Li, G. Faulkner, C. J. Stevens, and E. Shamonina, “Superdirective dimers of coupled self-resonant split ring resonators: Analytical modelling and numerical and experimental validation,” Sci. Rep., vol. 10, no. 1, p. 274, Dec. 2020.

[35]     A. Vallecchi, E. Shamonina, and C. J. Stevens, “Analytical model of the fundamental mode of 3D square split ring resonators,” J. Appl. Phys., vol. 125, no. 1, p. 014901, Jan. 2019.

[36]     A. Vallecchi, S. Chu, L. Solymar, C. J. Stevens, and E. Shamonina, “Coupling between coils in the presence of conducting medium,” IET Microwaves, Antennas Propag., vol. 13, no. 1, pp. 55–62, Jan. 2019.

[37]     A. Radkovskaya, S. Kiriushechkina, A. Vakulenko, P. Petrov, L. Solymar, L. Li, A. Vallecchi, C. J. Stevens, and E. Shamonina, “Superdirectivity from arrays of strongly coupled meta-atoms,” J. Appl. Phys., vol. 124, no. 10, p. 104901, Sep. 2018.

[38]     S. Chu, A. Vallecchi, C. J. Stevens, and E. Shamonina, “Fields and coupling between coils embedded in conductive environments,” EPJ Appl. Metamaterials, vol. 5, p. 2, Feb. 2018.

[39]     J. Yan, C. J. Stevens, and E. Shamonina, “A Metamaterial Position Sensor Based on Magnetoinductive Waves,” IEEE Open J. Antennas Propag., pp. 1–1, 2021.

[40]     A. Vallecchi, D. Cadman, W. G. Whittow, J. Vardaxoglou, E. Shamonina, and C. J. Stevens, “3-D Printed Bandpass Filters With Coupled Vertically Extruded Split Ring Resonators,” IEEE Trans. Microw. Theory Tech., vol. 67, no. 11, pp. 4341–4352, Nov. 2019.

[41]     A. W. Powell, J. Ware, J. G. Beadle, D. Cheadle, T. H. Loh, A. P. Hibbins, and J. R. Sambles, “Strong, omnidirectional radar backscatter from subwavelength, 3D printed metacubes,” IET Microwaves, Antennas Propag., vol. 14, no. 14, pp. 1862–1868, Nov. 2020.

[42]     J. D. de Pineda, G. P. Ward, A. P. Hibbins, and J. R. Sambles, “Metasurface bilayer for slow microwave surface waves,” Phys. Rev. B, vol. 100, no. 8, p. 081409, Aug. 2019.

[43]     R. C. Mitchell-Thomas, O. Quevedo-Teruel, J. R. Sambles, and A. P. Hibbins, “Omnidirectional surface wave cloak using an isotropic homogeneous dielectric coating,” Sci. Rep., vol. 6, no. 1, p. 30984, Nov. 2016.

[44]     P. Petrov, A. P. Hibbins, and J. R. Sambles, “Microwave Superdirectivity with Dimers of Helical Elements,” Phys. Rev. Appl., vol. 13, no. 4, p. 044012, Apr. 2020.

[45]     N. Liu, A. Ihalage, H. Zhang, H. Giddens, H. Yan, and Y. Hao, “Interactive human–machine learning framework for modelling of ferroelectric–dielectric composites,” J. Mater. Chem. C, vol. 8, no. 30, pp. 10352–10361, 2020.

[46]     P. J. Bradley, M. O. M. Torrico, C. Brennan, and Y. Hao, “Printable all-dielectric water-based absorber,” Sci. Rep., vol. 8, no. 1, p. 14490, Dec. 2018.

[47]     B. Liu, H. Chu, H. Giddens, R. Li, and Y. Hao, “Experimental Observation of Linear and Rotational Doppler Shifts from Several Designer Surfaces,” Sci. Rep., vol. 9, no. 1, p. 8971, Dec. 2019.

[48]     B. Liu, H. Giddens, Y. Li, Y. He, S.-W. Wong, and Y. Hao, “Design and experimental demonstration of Doppler cloak from spatiotemporally modulated metamaterials based on rotational Doppler effect,” Opt. Express, vol. 28, no. 3, p. 3745, Feb. 2020.

[49]     Q. Cheng, M. Naeem, and Y. Hao, “Composite Luneburg lens based on dielectric or plasmonic scatterers,” Opt. Express, vol. 27, no. 8, p. 10946, Apr. 2019.